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Non-Hermitian Fermion Mapping for
One-Component Plasma
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The two-dimensional, one-component logarithmic Coulomb gas is mapped onto
a non-Hermitian fermionic field theory. At f=2, the field theory is free.
Correlation functions are calculated and a perturbation theory is discussed
for extending to other f. A phase transition is found at the mean-field level at
large B. Some results are extended to spaces of constant negative curvature.
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1. INTRODUCTION

The problem of the statistical mechanics of a system of particles in a two-
dimensional plane, all possessing the same sign of charge and interacting
via a repulsive Coulomb interaction, has been looked at by a number of
authors.? This is referred to as a one-component plasma since all particles
have the same sign of charge. The Coulomb interaction is logarithmic in
two-dimensions which makes it possible to introduce a dimensionless
inverse temperature f such that the partition function of an N-particle
system is equal to

N N N
f( ]_[)dz,-dz‘,.> 1 1z:i— 2,1 [] e (1)

i=1 i<j i=1

where U(r) is some background potential and where z=x+ir and
Z=x—it are coordinates in the complex plane.

It is believed that at some [ of approximately 140 there is a first order
phase transition in the system.® Below the phase transition the system
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acquires long-range orientational order but does not acquire long-range
positional order. The system is thus of interest as a model of crystallization.
In the last section of the paper, we consider this model on a space of
constant negative curvature. This may make it possible to look at effects of
frustration since it is not possible to form a hexagonal crystal lattice
without defects on a negative curvature space.®

This problem is exactly solvable at f=2 for a variety of background
potentials. We introduce a new method of solving the problem, based on
mapping to a non-hermitian field theory, which may be easier to deal with
for certain potentials. In addition, we look at a perturbation theory which
permits a mean-field analysis of the phase transition in this theory.

Previously, in ref. 4, it was pointed out that an appropriate field
theory could describe a two-component plasma, and that an appropriate
limit of that theory would yield the one-component plasma. That limit is
in fact the theory described in this paper. However, explicit calculations
were performed in this theory only in the case of equal numbers of charges
of both signs, and no calculation was made of the one-component plasma
using the field theory technique.

In one dimension, fermion mappings onto non-hermitian free field
theories exist for f=1, 2, 4. See ref. 5.

2. FERMION MAPPING AT =2

As a a statistical mechanics system, the model, for a finite number of
particles in a uniform background, is defined by the partition function

N N N
Z=f<ﬂ dz,»dz‘i> [T lzi=z|# [T e7? " (2)

i=1 i<j i=1

We note that the factor [TV, |z,—z;|# in the partition function is

i<j

proportional to a correlation function in a free bosonic field theory:

< ﬁ ei\/ﬁ¢(zi)€—iN\/xG¢(oo)> (3)
i=1
where the field @ has the action S=(1/f) | dxdi(V®)? and where the

factor of e ~*¥ V4= #(=) a¢ts as a neutralizing background charge.
Therefore, Eq. (2) is proportional to

N N
z=([do] | < [T dff>e‘s"'”ﬁ He) [T felVimdeler ity ()

i=1 i=1
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This is proportional to

Z:J‘[d¢]je*3—iN\/‘G¢(oo)+]e ’J”Ze'ﬂ;w”dzdz’ ()

as the perturbative expansion of the exponential in powers of je*”‘z'z x
¢4 @) g4z 4= vanishes for all except the Nth power, when we recover
Eq. (4). It does not matter whether there is a prefactor in front of
jei‘/z;"’(""’ dx dt in Eq. (5) as this will only change the partition function
by a constant factor. Similarly, in Eq. (6) below, the prefactor in front of
the exponential of the field @ is unimportant.

We may then go to an infinite number of particles, and write the parti-
tion function as

Zz'[[d(p]e~S+](e‘&¢u_n_ip\/i;¢(x‘,))dxd, (6)

Here, the neutralizing background charge, instead of being placed at
infinity by the term e ¥ V37 ®=) js spread throughout space by the term
of —ip /4 d(x. 0)dxdi Thig leads to a particle density proportional to p.

This quivalence between Eqs. (2) and (6) is similar to the equivalence
between the statistical mechanics of an plasma consisting of both plus and
minus charges and the field theory of the sine-Gordon equation.

The sine-Gordon equation at f=2 maps onto a problem of free
massive fermions, while at other temperatures the equation maps onto the
Thirring model, a model of interacting massive fermions.’® A review of this
procedure, known as bosonization, may be found in the book.” We will
follow an analogous procedure in this case, leading to a non-hermitian field
theory of fermions. All correlation functions will be given at =2, while
a perturbation theory in a four-fermion interaction will lead to other
temperatures.

Each term of the bosonic action translates into a given term of an
action for relativistic fermions. The action S for the field @ translates into
2 j (‘V;e 0¥ r— ‘//2 0,¥ ) dx dt.

The term ¢/ V# 20 (ranslates into 2nay’ Y, where a is an ultra-
violet cutoff for the theory. The existence of only one kind of charge in the
statistical mechanics theory leads to a non-hermitian field theory.

[t is seen from the previous paragraph that placing a charge in the
statistical mechanics theory at a given point corresponds to turning a fer-
mion at that point from a right-mover into a left-mover. The effect of the
neutralizing background charge is to turn left-movers back into right-
movers via the anomaly. One may imagine the neutralizing background
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charge as a charge at infinity. Unfortunately we run into problems when
finding a term in the fermionic theory which corresponds to this back-
ground; we Will employ a trick of integration by parts below to circumvent
these difficulties.

We can write

—jip 47r¢>a’xdt=—fip 47 P(0,t) dx dt (7)
and integrate by parts with respect to ¢ to turn this into
f ip \/4n (0, ®) dx dt + {boundary terms} (8)
This then becomes in the fermionic theory equal to
f pt2nJ . dx dt + {boundary terms} (9)

where J, =y iy, —y LY This has the effect of introducing a time-
dependent chemical potential which has different signs for the right- and
left-movers. If we imagine following the Hamiltonian evolution of the fer-
mionic field theory in imaginary time, right-moving particles are constantly
converted into left moving particles, but the energy of the states keeps
changing so that on average the number of holes in the negative energy
sea is the same for the both chiralities. The effect of the boundary term
resulting from the integration by parts is that we must start at 1= —co
with a state in which all right-moving states (of both positive and negative
energy) are filled and all left-moving states are empty and end at = co
with a state in which all left-moving states are filled and all right-moving
states are empty. Let us refer to the state at 1= — oo as the state V'~. We
will refer to the state at = + co as the state V'+.
The final action for the fermion field is

[0 k0 r =L 000+ /20 Wb+ pW LY, — U hba)} dxdi
(10)

The factor \/2_/) is chosen to cancel a factor arising later from an
integral of je‘z"’”z dt. It also serves to give the term in the action the
correct dimensions. This factor is unimportant since the fixed density of the
background charge means, due to charge neutrality, that the number of
particles in the statistical mechanics problem is fixed and thus this factor
just multiplies the partition function but does not affect the physics. This



Non-Hermitian Fermion Mapping for One-Component Plasma 315

is the analogue of the statement above, that prefactors in f{ront the
exponentials of the & field in Egs. (5) and (6) were unimportant. It is
simply a matter of convenience to choose this term to be \/Z-p instead of
2na as would be expected from the bosonization procedure.

In Eq. (10), there is freedom to choose different representations of the
background charge, which correspond to different gauges. The choice we
have made above is the choice which makes the calculation of correlation
functions the simplest. Another possiblity would be to replace t/, by

tJ,.—xJ,

X

3 (11)

where J,=i(y Ly r+ ¥ y,). This gauge has the advantage of leading to
rotationally and translationally invariant correlation functions.

The freedom to choose different gauges is analogous to the freedom in
magnetic problems to choose different gauges. The gauge in Eq. (10) is
analogous to Landau gauge. The gauge in Eq. (11) is analogous to sym-
metric gauge.

3. CORRELATION FUNCTIONS AT B=2

3.1. Introduction

We compute correlation functions for the fermionic field and use them
to then obtain correlation functions in the statistical mechanics problem. It
will hopefully be clear in which theory a correlation function is being
calculated.

We will compute propagators for the fermion field as follows: we will
first compute the propagators for the case in which the two operators lie
on the line 1 =0, using the gauge of Eq. (10). Then we will, in the gauge
of Eq. (11) discussed above, generalize to arbitrary position of the two
operators.

Instead of using a functional integral formalism to compute correlation
functions, we will use the operator formalism. In the operator formalism,
we can write a two-point correlation function of fields (1), ¥(2), when
both points 1 and 2 are on the line 1 =0, as the expectation value

% (V¥ Te S0 H0any(1) y(2) e =5 O |y (12)

where

Z=<V+|Te—jg“ﬂ(:)me—j",mmud’|V—> (13)
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In these equations, H(¢) is the Hamiltonian of the field theory at time .
The time-ordered exponential of the integral of this Hamiltonian serves to
propagate the vacuum from infinite time to time ¢ =0.

The term in the Hamiltonian, | y} x dx dt, can be written in Fourier
components as | (dk/2n) a'(k), a( —k)g. Each term in this integral is an
eigenoperator of the rest of the Hamiltonian, with eigenvalue 2k +4np!,
and so one may rewrite Eq. (12) in terms of operators acting just at time
t=0 as follows

l (V| e—j(dk/Zn)(j(‘;"e’z"P12+2kt)dt)\/i_pa*(k),‘a(—k)kl/j(l) W(2)
Z

x o~ 1§ (@ki2m)(§° o e~ 2012 4 24ty dr) /2 6t al — k) V> (14)

3.2. (ajag)

The simplest two-point function to compute is {a'(k),a(—k)g>. In
the expectation value of Eq. (14), for each k the operators a'(k), and a(k)

o 12 PN
must appear exactly once. It follows that Z = [, f = V2 ¢ ™" Thjg i

[T e*r2 (15)
k

By inserting the operator a'(k), a( —k)x into the expectation value, we
remove one term from the product of Eq. (15). This term is e*>*. There-
fore, (al(k), a(—k)z> =e~* %) In real space this is \/p/2 e~ ¢,
and in the gauge of Eq. (11) we can generalize to arbitrary positions of the
two operators so that it becomes /p/2 e =71 where z is the spacing
between operators.

3.3. (ala,), <ahap)

We next compute the function {a%(k),a(—k),>. We note that
initially all left-moving states are unoccupied at 1 = —co. Then all states are
occupied at 7 = co. If the state with momentum k is occupied at ¢ =0 then
this gives a contribution of 1 to the desired two-point function. If it is unoc-
cupied, then there is a contribution of 0. Therefore the desired two-point
function is

4] —2npt? + 2kt
2ue dt

© —2mpi? + 2kt
[we dt

(16)
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In real space, this is 1/(2niZ) e ~*?/» 12 where we use the gauge of Eq. (11)
to extend correlation functions off the line 1t =0.

The function {a'(k)ga(—k)z), in which both left-moving operators
are replaced by right-moving operators, is similar. One finds
(a'(z) g al0)g) = (1/2miz) e =P 1o,

3.4. (apa,)

The most interesting two-point function to compute is
{a'(k)ga(—k),>. This requires that one a'(k), a( —k)g operator appear
at time /<0 and one must appear at time ¢ > 0. Therefore, the two-point
function is

_ 2 . .2 3
2npt + 2kt d[ 580 e 2npt's + 2kt dt’

S 2=¢

In real space, this is 2p [, =2 dr' (& e=2" gy | (dk/2m) e ~*m
x eFtx+21+20) That becomes

j‘oo e—2np12+2kl dt (17)

0
p j e—anr'2 dr' jw e—anlz dr e(np/Z)(ix+2r+21’)2 /2/) (18)

— 0 0

This is equal to /2 p*? [0, dt' [ di elm/D(~x"+ 8+ dixti 1) [ntegrate o'
to obtain (1/27) \/p/2 {& di((1/(1 + (ix/2)})) e —x1+ix4D This is equal to
(1727) \/pj2 et 7D < § 2 e™!/t which becomes

| \/%eﬂnpﬂ) |22 Ei(7p |z|?) >

2n

where Ei is the exponential integral function where again we use the gauge
of Eq. (11) to generalize to arbitrary position of operators.

3.5. Summary of Propagators

These four propagators can be written as one propagator using a

matrix notation. One finds that
LI P o=z
2niz 2

1 1
\/E e tp/2) 1212 Ei(np |z|2) ﬁ e~ m(p12) 1212

2\ 2
(20)

<¢T(Z)L. R ‘//(O)L. R =
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where the top row of the matrix denotes the left chirality for the creation
operator and the bottom row denotes the right chirality for the creation
operator, Similarity the left row of the matrix denotes the left chirality for
the destruction operator and the right row denotes the right chirality for
the destruction operator.

3.6. Statistical Mechanics

Having computed the propagators, it is possible to compute correla-
tion functions in the statistical mechanics theory. Let us compute the two-
point particle correlation function at §=2. This is obtained by the expecta-
tion value <\/2_p Y1(0) ¥ 2(0) \/Z_pd/}(z) Y (z)>. There are two ways to
pair off the operators in this expression using Wick’s theorem, either pair-
ing the operators at the same point or at different points. The result is

pA1 —e=m et (21)

which agrees with the known result.

4. PERTURBATION THEORY

By adding to the action of the fermionic theory a term of the form
(Y)%, we will, due to the bosonization rules, change the value of f. An
attractive interaction will raise §, while a repulsive interaction will lower p.
We will employ a simple mean-field type procedure: the interaction will be
decoupled into an interaction with an external gauge field. Then, we will
integrate out the fermionic field to obtain an action for the gauge field. It
will be found that at sufficiently high, finite § the quadratic term in the
action for the gauge field will change sign. This will be identified as the
location of a second order phase transition. It will then be argued that
cubic terms appear in the action for the gauge field, and will convert the
phase transition to first order.

The approximation involved in the perturbation theory is purely a
mathematical approximation. The perturbation theory should give correct
results order by order in the expansion parameter, which is (1/2) —(1/f),
but the extension below of the one loop calculation to large values of the
parameter (that is, to the phase transition point) should not be trusted that
accurately.

In Eq. (6), we may write the action S as (1/2){dxd(V®)*+
(1/8—1/2) § dx d(V®)>. The first term can be bosonized as before. The
second term is equal to (1/8—1/2)(:Y L)Yy, :). We define the
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normal ordering of the fermion fields simply be requiring that, in the per-
turbative diagram expansion, using the gauge of Eq. (11), one does not
include tadpole diagrams, in which two operators are contracted at the
same point. This in fact agrees with the usual definition of normal ordering,
that one define 2y Ly x: to have vanishing expectation value in the vacuum
of the massless, non-interacting fermion system.

For a given value of f, if we choose to use the gauge of Eq. (10), the
desired fermionic action is

J {20k 0091000+ /2 WL 2R LY~ Vb

1 1
# (g )4 d (22)

For calculations below, we use the gauge of Eq. (11).

We can write the interaction term by introducing an external gauge
field Ag .. The action for the gauge field plus the coupling between the
gauge field and the fermion field is

I I
I{ARJR+ALJL+EWARAL}dxdt (23)

where we define Jy =Lk : and J, =y 1y, : and where Ay is the com-
plex conjugate of 4.

It will turn out, when we compute various diagrams, that results will
not be gauge invariant. This is unrelated with the particle choice of gauge
we made to compute propagators, and instead is a result of the boundary
conditions due to the neutralizing background field. The theory is also not
invariant under charge conjugation. This implies that Furry’s theorem®
need not hold, and we may obtain contributions from fermion diagrams
with an odd number of photon vertices attached. This will then convert the
second order transition into a weakly first order transition.

Let us first compute the quadratic terms in the action for A , resulting
from integrating out . There are three different types of diagrams which
must be considered, which involve computing different current-current cor-
relation functions, We may have to compute a correlation function involving
two currents of the same chirality. This will be considered first. We may
have to compute a correlation function involving currents of the opposite
chirality. This correlation function splits into two pieces: one piece which
may be obtained by naively calculating diagrams, and one piece which is
a result of the need for a regulator field to get rid of divergences.
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The introduction of the quadratic term will change the action of the
gauge field, as a function of wavevector k, to

1 1 1
Z;(I_/Z)T/ﬁ)AR(k)AL(_k)_E (Irlk) Jp(—k)) Aplk) Ap(—k)
l
—3 {Ik) T =k)> Ap(k) Ap(—k) —<JIrlk) T —k)) Aglk) A (—k))
(24)

All that needs to be computed now are some current-current correlators.

The current-current correlation function {Jg(0) Jx(z)) is equal to
(1/(2nz)?) e **, We must take the Fourier transform of this at a given
momentum k. In order to do this, it is necessary to introduce a massive
regulator field. Without the term e~ ™ 2 in the correlator, the Fourier
transform of (1/(27z)?) is known to be (1/4n)(k2 /|k|*), where k, is equal
to k, — ik,, kg is equal to k, + ik,, and |k|> =k k. The term e~ ¥ mul-
tiplies the rest of the correlator in real space and thus convolves with the
correlator in Fourier space. The kth Fourier component of the current-
current correlator in momentum space is then

Ll

- —(lk~N%/4np) 25
4r [, ¢ (25)

CTtk) Tl —k)y = [ di di

This integral can be performed analytically and is equal to

By

_EW(l_e_“kWﬂp)) (26)

IRk Jp(—k) >

It is seen that at large k the current-current correlator is unchanged from
the correlator for a fermionic system with no non-hermitian term. The
correlation function of two left-moving currents is calculated in the same
way, simply replacing k; by k. and vice-versa.

The naive contribution to the correlator of two currents of opposite
chirality is given by (Jg(0)J.(z))>. This is ( p/4n) Ei(np |z|?). The Fourier
transform is (p/4m) { dx dt [ (daja) e**~"4=*+ Doing the integrals
over x and ¢ first, we obtain
1 ©
E L %e—(lkleanp) =% (1— e—k2/4np) (27)

The necessity of introducing a massive regulator field to compute the
correlation function of two currents of the same chirality gives an addi-
tional contribution to the correlation function of two currents of opposite



Non-Hermitian Fermion Mapping for One-Component Plasma 321

chirality. This piece is infinitely short range, and so independent of k. It is
equal to (1/4n). For the fermionic system with no non-hermitian term, such
a piece is needed to maintain gauge invariance.

Adding the two contributions to the correlation function of two
currents of opposite chirality yields

[
CILlk) TR —K)y ==+ (1 — =4 (28)

Even without looking closely at the Fourier transform of the current-
current correlators, we may see that there will be an instability for finite f
at the level of the quadratic action for A, x. For the fermionic system with
ho non-hermitian term, the quadratic term changes sign, for all k trans-
verse to the direction of the gauge field, at § = oo, which corresponds to a
finite value of the attractive interaction. By adding the non-hermitian terms
to the action, we have altered the quadratic terms. The correlation function
of two currents of the same chirality has been reduced, but the reduction
decays exponentially for large |k|2 The correlation function of two currents
of the opposite chirality has been increased by an amount which decays
only algebraically for large |k|2 Thus, for sufficiently large |k|?, the term
which is added to the action of the 4, g field is increased and the intability
will occur at a lower value of the attractive interaction. This corresponds
to an instability at a finite value of S.

Let us locate the transition temperature in this lowest order theory.
The terms in the action given by Eq. (24) due to the current-current
correlators are greatest when the field 4 is transverse. The sum of these
terms then is (summing all different terms and taking Az=A4,)

1 1
$+E(l_e_k2/4"”)+P(l—e"‘2/4"”) (29)

This function is equal to (1/2n) at k=0 and k = 0. The function increases
in magnitude as k increases from 0, until it hits a maximum, then decreases
again. Numerically, the maximum is at k =4.74711 \/,1_) At this wavevector,
we find that the theory goes unstable at a temperature of § = 15.4036; here,
the theory going unstable means that at this wavevector, the action given
by Eq. (24) changes sign. At other wavevectors, and for the case when the
gauge field is not transverse, one will find that the action changes sign at
a larger value of f.

In a mean-field approximation, in the absence of cubic terms, the
instability discussed in the quadratic action for 4, ,, would lead to a
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second order transition. It will now be shown that cubic terms are non-
vanishing and that this transition becomes first order. Due to the com-
plexity of the diagrams, we will not explicitly compute the cubic and quar-
tic terms, and will simply show that the cubic term is non-vanishing.

In 2 dimensions Furry’s theorem may be proved for a massive or
massless Dirac field. If we have a fermion loop with an odd number of ver-
tices, we may imagine reversing the direction of the propagation of the fer-
mion around the loop. This will change the sign of all propagators which
preserve chirality (propagators of the form (YL > or <¥ly,>) of the
fermion field, and preserve the sign of all propagators that change chirality.
Since the fermion must have the same chirality after it goes around the
loop, there are an even number of propagators which change chirality, and
thus an odd number of propagators which preserve chirality. This means
that the total sign of the diagram changes when reversing the direction of
propagation around the loop and thus the total contribution from both
directions is zero.

For the non-hermitian theory considered here, the above proof breaks
down. When reversing the direction of propagation around the loop, we
may change some propagators from (y}(z,) Yr(z,)> to (Yk(z,) ¥ (z,)).
Since the non-hermitian theory lacks charge conjugation invariance, these
two propagators have different values, and thus the two contributions do
not cancel. This means that cubic terms do appear in the action for A
and the transition becomes first order. It should be noted that these cubic
terms are intrinsically not gauge invariant, since they vanish in a gauge in
which 4, =0 or Ax=0.

5. EXTENSION TO CURVED SPACE

We will also consider this model on a space of constant negative cur-
vature. We may define such a space in the half-plane given by Im(z) >0, or
equivalently, ¢ > 0. We will use a conformal gauge for the metric such that
ds® = (2/Rt*)(dx* + dr*). Then the scalar curvature is equal to R.

It is possible to transcribe the action for the bosonic field to this
curved space. One obtains

Z=f [dD] e—S+(2/R12)I{ei\/z;:w(x,r)_ip\/‘g—ngp(x, 0} dx de (30)

The factor of (2/R¢?) is due to the volume element in the curved space.
There is one point in this theory which requires caution. In the flat

space problem, given by Eq. (2), one must introduce a length scale a to

properly define the partition function. Thus, the term |z,—z,|# in Eq. (2)
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should be written |(z, — z;)/a|”; the length scale is also needed to properly
define particle-background and background-background interaction. In the
bosonic field theory, the ultraviolet cutoff provides this length scale.
However, one would like to define the length scale to be constant when
measured in the metric in the negative curvature space; this means that in
order to maintain the same ultraviolet cutoff a when measured in length \/F
everywhere, the ultraviolet cutoff when measured in length /dx?+ di?
must vary proportional to 1. Therefore, the operator | ¢’ VAR #(x.0) posonizes
into something proportional to (2zt) Y/} ¥ . Because the ultraviolet cutoff
is now position dependent, one must now be careful about the ultraviolet
cutoff when finding the fermion action.
One finds that the fermionic action for the curved space problem is

1
[ {20k 0ia =L 00 4L UL n = Vi) e 3)

If we write the partition function resulting from this action in terms of
particle positions in the upper half plane, we obtain

N . Js
1S ey [ 32

w1 Liig

where U is the potential arising from a background charge equal to
(2p/Ri?); thus, U= —4n(p/R) In(2).

In action of Eq. (31), the ratio p/R provides a measure of the particle
density in terms of the curvature of the manifold. As this ratio tends to
infinity, we expect to recover the flat space results.

In Eq. (31) there are two places in which factors of 1/t occur. These
arise for different reasons. The factor in front of the Y}y arises from a
combination of the 1/r* of the volume element and the factor of ¢ arising
from the ultraviolet cutoff as discussed above; this is also the reason for the
factor of 1/t in _Eq. (32). The other factor arises from integrating the
—j(2i/Rt2)p\/4—7t¢'(x, 1)di term by parts to turn it into {(2i/Rt)p x
(/4 D(x, 1)) dt.

It is now possible to proceed as before and calculate propagators. We
will simplify and sketch the calculation of only (Y} z>. We restrict to the
case in which both operators are on the line =1, The only new feature
that emerges compared to the previous calculation in flat space is that the
final state is different. The initial state, |V~ ), is still a state in which all
right-moving states are occupied and all left-moving states are empty. The
system starts in this state at time ¢ = 0. However, there is no term left from
the integration by parts at 1= o0 and therefore the system ends in the
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vacuum state | V> which is the normal vacuum state for a the free fermion
theory, where all negative energy states are filled and all positive energy
states are empty.

Following a similar procedure as before, we move all /]y 5 operators
resulting from the Hamiltonian evolution to the time r=1. There, an
operator a'(k), a( —k), comes with the amplitude

Joo dt%e_§}2k+8n/)/(Rl')dl’ (33)
0

This is equal to [§ di(1/e'=3#R) =D which is proportional to
e~ %(1/|k|¥/R), Therefore, (af(k),a(—k)z> at t=0 is proportional to
e?* |k|®*/R. Due to the initial and final states, |V =) and |V, the
propagator is non-vanishing only for k£ <0, when this Fourier transforms
to 1/(1 — i(x/2))! +57/R,

The result for the correlation function in the statistical mechanics
problem, obtained from calculating {y¥(0), (0) g ¥(x) . Y(x)gD, is

1 1+ 8np/R
() .

Recall that the distance between two points on the line =1, located at
x =0 and x =x, is, measured in the metric for the negative curvature space,
less than x. In reality it goes logarithmically with x for large x. If the
distance between the two points in the curved space metric is equal to s,
then it may be shown that

. Rs
x=2$1nh<\/—2t5> (35)

We find that the correlation function of two charges in the statistical
mechanics problem is

1

1+ 87p/R
36
R/2(s/2) )2> (30)

| —

<1 + Sinh(
Thus, the actual decay of correlations in the curved space problem is
exponential, as would be expected from a high-temperature expansion. The
slower decay of the correlations in the curved space case, exponential
instead of Gaussian, indicates that screening is less effective than in flat
space. If we take a limit as p/R goes to infinity, the correlation function
turns back into a Gaussian, as in the flat space case.
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6. CONCLUSION

A new formulation has been given of the one-component plasma
problem. This provides an alternative way of deriving old results. This
technique may turn out to be simpler than others for certain background
potentials. In addition, the perturbation theory of this model in terms of
fermionic operators is very different from the previously developed pertur-
bation theory for the statistical mechanics theory,® and may lead to easier
calculations.

In particular, we located an instability of the theory at the quadratic
level. It must be noted that the location of the second order transition in
this theory, at = 15.4036, is approximately an order of magnitude lower
than the actual location of a first order transition. Also, the appearance of
cubic terms, while converting the second order transition to first order, will
further lower the transition f. This is evidence that the higher order correc-
tions to the effective action for the gauge field are not negligible. However,
the manner in which the transition temperature is calculated makes this
number very sensitive to small adjustments in the effective action; one must
calculate the response functions in the fermionic theory and then relate
to the reciprocal of the change in the action for the gauge theory. The act
of taking the reciprocal makes this procedure less accurate. Unfortunately,
we are also unable to understand the particular wavevector which goes
unstable, as we do not see how to easily relate this wavevector to any
spacing in a triangular lattice. In addition, since the order parameter is a
vector, it is possible to construct a mean-field state that breaks orienta-
tional symmetry but not translational symmetry (constant non-vanishing
gauge field). This would require that the first wavevector to go unstable
would be at £ =0. This does not happen yet at the one-loop level, though
one would expect it would happen to higher orders.

However, we may hope that the perturbation series for the effective
action of the gauge field will be convergent, order by order in (1/2—1/f),
as the only actual instability of the theory is at f = oc. This implies a radius
of convergence of 1/2, and thus the theory should converge for | < f < oc.
Arguments like Dyson’s instability argument for the non-convergence of
the perturbation series do not apply here since there is no instability near
B =2.19 To make this convergence more clear, it may help to adjust units
so that the action for the gauge field is

j{ARAmL [an <%—%,>(ARJR+ALJL)} dx di (37)

to avoid what may look like a singularity at f=2. Thus, a sufficiently high
order calculation in this theory should yield the effective action for the
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gauge field, which can then be treated in a mean-field fashion to, in prin-
ciple, extract the transition properties with arbitrary accuracy. Of course,
the series might diverge at the point of a second order phase transition due
to infrared problems, but since a first order phase transition is expected to
occur before the second order transition, this is not a problem.

Finally, the model has been considered on a curved manifold. The
two-point correlations in the original statistical model have an exponential
decay instead of a Gaussian decay. Since the decay of this quantity reflects
the effects of screening, it seems that on a curved manifold the system
screens less well. This may be flue to an effect of frustration, introduced by
the curvature. It would be interesting to extend the perturbation theory to
a curved manifold, both to look at the RPA as well as to look at correla-
tion functions away from f=2. It is believed from a perturbation theory
for the original statistical mechanics model® that the correlation functions
on a flat space begin to show short-range order as soon as f§>2. This
means a lowest order perturbation theory calculation for the curved space
may show interesting frustration effects.
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